NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A runner accelerates to a velocity of $1.77 \mathrm{~m} / \mathrm{s}$ due west in 3.00 s . His average acceleration is $0.914 \mathrm{~m} / \mathrm{s}^{2}$, but directed east. What was his velocity when he began accelerating? - 3 pts -

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m / s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

During the annual shuffleboard competition, Renee gives her puck an initial speed. Once leaving her stick, the puck slows down at a rate of $-4.06 \mathrm{~m} / \mathrm{s}^{2}$ and it takes 2.40 seconds to come to a complete stop. Determine the initial velocity of the puck. - 3 pts -

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m / s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 2- $\mathbf{V i}_{\mathbf{i}} \quad \mathrm{V}_{\text {final }}=\mathrm{V}_{\text {initial }}+$ at

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A cart is rolling to a stop. Friction slows the cart down with an acceleration of $-1.35 \mathrm{~m} / \mathrm{s}^{2}$. If the cart slowed down over 2.80 seconds, what was the cart's initial velocity? - 3 pts -

- Initial velocity - m / s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A skier goes down a slope in 4.56 s with an unknown initial velocity. If the acceleration of the slope is 2.68 $\mathrm{m} / \mathrm{s}^{2}$ and the skier's final velocity was $16.8 \mathrm{~m} / \mathrm{s}$, what was the skier's initial velocity? - 3 pts -

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m / s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 2-vi $\quad V_{\text {tinal }}=V_{\text {initial }}+$ at

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A curling stone travels across the ice for 1.89 seconds until coming to rest. If the acceleration of the stone is $-1.67 \mathrm{~m} / \mathrm{s}^{2}$, what was the stone's initial velocity? - 3 pts -

- Initial velocity - m / s, starting from rest, initially/beginning, how fast...
- Final velocity - m / s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 2- $\mathbf{V i}_{\mathbf{i}} \quad \mathrm{V}_{\text {final }}=\mathrm{V}_{\text {initial }}+$ at

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A sprinter crosses the finish line and comes to a rest over 1.35 seconds with an acceleration of $-6.00 \mathrm{~m} / \mathrm{s}^{2}$. What was the sprinter's initial velocity? - 3 pts -

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

