Worksheet: Kinematics Part 2-t $\quad V_{\text {final }}=V_{\text {initial }}+$ at

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

The velocity of a train is $15.2 \mathrm{~m} / \mathrm{s}$. At an average acceleration of $-0.188 \mathrm{~m} / \mathrm{s}^{2}$, how much time is required for the train to decrease its velocity to $5.14 \mathrm{~m} / \mathrm{s}$? - 3 pts -

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 2-t $\quad V_{\text {final }}=V_{\text {initial }}+$ at

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A car comes to a complete stop at a stop sign and then starts to accelerate at $4.30 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take for the car to reach a speed of $12.0 \mathrm{~m} / \mathrm{s}$? -3 pts -

- Initial velocity - m / s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 2-t $\quad V_{\text {final }}=V_{\text {initial }}+$ at

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A corvette can accelerate during high speeds at about $2.0 \mathrm{~m} / \mathrm{s}^{2}$. At this rate how long does it take the car to accelerate from $25.6 \mathrm{~m} / \mathrm{s}$ to $47.8 \mathrm{~m} / \mathrm{s}$? - 3 pts -

- Initial velocity - m / s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

John Doe gets off the highway in his 1967 Shelby 427 Cobra. Starting from a speed of $35 \mathrm{~m} / \mathrm{s}$ and decelerating at a rate of $7.4 \mathrm{~m} / \mathrm{s}^{2}$ how long did it take him to come to a complete stop? - 3 pts -

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m / s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

An engineer must design a runway to accommodate airplanes that must reach at a ground speed of $+61 \mathrm{~m} / \mathrm{s}$ before they can take off. These planes are capable of being accelerated uniformly at the rate of $+2.5 \mathrm{~m} / \mathrm{s}^{2}$. How long will it take the places to reach takeoff speed? - 3 pts -

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m / s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 2-t $\quad V_{\text {final }}=V_{\text {initial }}+$ at

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A dog is walking at $.500 \mathrm{~m} / \mathrm{s}$ and sees a squirrel and accelerates at $1.56 \mathrm{~m} / \mathrm{s}^{2}$ to a final velocity of $3.08 \mathrm{~m} / \mathrm{s}$. How long did the dog's acceleration last? - 3 pts -

- Initial velocity - m / s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

