NAME:		
 Read the following problem Highlight your "proof" for assigning variables List the givens Solve Write your answer with the proper units 		
The velocity of a train is 15.2 m/s. At an average acceleration of - 0.188 m/s², how much time is required for the train to decrease its velocity to 5.14 m/s? - 3 pts -		
 Initial velocity - m/s, starting from rest, initially/beginning, how fast Final velocity - m/s, comes to a stop/rest, finally/end, how fast Acceleration - m/s² Time - s, how long 		
Givens	Work	
Answer		

 Read the following problem Highlight your "proof" for assigning variables List the givens Solve Write your answer with the proper units 		
A car comes to a complete stop at a stop sign and then starts to accelerate at 4.30 m/s². How long does it take for the car to reach a speed of 12.0 m/s? - 3 pts -		
 Initial velocity - m/s, starting from rest, initially/beginning, how fast Final velocity - m/s, comes to a stop/rest, finally/end, how fast Acceleration - m/s² Time - s, how long 		
Givens Work		

Worksheet: Kinematics Part 2 - t $v_{final} = v_{initial} + at$

NAME:		
 Read the following problem Highlight your "proof" for assigning variables List the givens Solve Write your answer with the proper units 		
A corvette can accelerate during high speeds at about 2.0 m/s². At this rate how long does it take the car to accelerate from 25.6 m/s to 47.8 m/s? - 3 pts -		
 Initial velocity - m/s, starting from rest, initially/beginning, how fast Final velocity - m/s, comes to a stop/rest, finally/end, how fast Acceleration - m/s² Time - s, how long 		
Givens	Work	
Answer		

NAME:		
 Read the following problem Highlight your "proof" for assigning variables List the givens Solve Write your answer with the proper units 		
John Doe gets off the highway in his 1967 Shelby 427 Cobra. Starting from a speed of 35 m/s and decelerating at a rate of 7.4 m/s ² how long did it take him to come to a complete stop? - 3 pts -		
 Initial velocity - m/s, starting from rest, initially/beginning, how fast Final velocity - m/s, comes to a stop/rest, finally/end, how fast Acceleration - m/s² Time - s, how long 		
Givens	Work	
Answer		

Worksheet: Kinematics Part 2 - t $V_{final} = V_{initial} + at$		
NAME:		
 Read the following pro Highlight your "proof" f List the givens Solve Write your answer with 	for assigning variables	
before they can take off. The	unway to accommodate airplanes that must reach at a ground speed of +61 m/s ese planes are capable of being accelerated uniformly at the rate of +2.5 m/s ² . es to reach takeoff speed? - 3 pts -	
	starting from rest, initially/beginning, how fast comes to a stop/rest, finally/end, how fast	
Givens	Work	

Answer

NAME:		
 Read the following problem Highlight your "proof" for assigning variables List the givens Solve Write your answer with the proper units 		
A dog is walking at .500 m/s and sees a squirrel and accelerates at 1.56 m/s² to a final velocity of 3.08 m/s. How long did the dog's acceleration last? - 3 pts -		
 Initial velocity - m/s, starting from rest, initially/beginning, how fast Final velocity - m/s, comes to a stop/rest, finally/end, how fast Acceleration - m/s² Time - s, how long 		
Givens	Work	
Answer		