Worksheet: Kinematics Part 2-a $\quad V_{\text {final }}=V_{\text {initial }}+$ at

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A car is traveling in a straight line has a speed of $17.1 \mathrm{~m} / \mathrm{s}$ at some instant. After 9.20 s , its speed is 9.41 m / s. What is its average acceleration in this time interval? - 3 pts -

- Initial velocity - m / s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

The current holder of the Outright World Land Speed Record is Thrust SSC, a twin turbofan jet-powered car which achieved $763.035 \mathrm{mph}(341 \mathrm{~m} / \mathrm{s})$ in October 1997. This was the first car to break the sound barrier. If the car started from rest and accelerated over a time period of 16 seconds. What was the car's acceleration? - 3 pts -

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m / s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

Suppose a plane starts from rest. The place accelerates down the runway and at $t=29 \mathrm{~s}$ attains a velocity of $v=+72 \mathrm{~m} / \mathrm{s}$, where the plus sign indicates the velocity points to the right. Determine the average acceleration of the plane. - 3 pts -

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m / s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 2-a $\quad V_{\text {final }}=V_{\text {initial }}+$ at

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

If a sports car can go from rest to $23.0 \mathrm{~m} / \mathrm{s}$ in 7.60 s , what is the magnitude of its average acceleration? - 3 pts -

- Initial velocity - m / s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 2-a $\quad V_{\text {final }}=V_{\text {initial }}+$ at

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A car is driving at a velocity of $4.19 \mathrm{~m} / \mathrm{s}$. The car then accelerates to a velocity of $8.22 \mathrm{~m} / \mathrm{s}$ for 5.31 s . What is the car's acceleration? - 3 pts -

- Initial velocity - m / s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A snowmobile on a frozen pond is moving at $15.0 \mathrm{~m} / \mathrm{s}$ when the driver decides to pass a slow-moving sled. If the driver accelerates to a speed of $19.5 \mathrm{~m} / \mathrm{s}$ in a time of 4.00 seconds then what was the acceleration? - 3 pts -

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m / s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

