- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

er time your another mar and proper and		
A car is already traveling at a speed of 12 m/s when the driver decides to accelerate at 2.7 m/s² for 2.5 seconds. How far does the car travel during this time? - 3 pts -		
 Displacement - m, how far Initial velocity - m/s, starting from rest, initially/beginning, how fast Acceleration - m/s² Time - s, how long 		
Givens	Work	
Answer		

 $x = v_{initial} t + \frac{1}{2} a t^2$

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

or ville your allower ma	, the proper dime	
From the top of a cliff, a person used a slingshot to fire a pebble straight downward with an initial speed of 2.20 m/s. After 3.00 s, how far beneath the cliff-top is the pebble? - 3 pts -		
 Displacement - m, how far Initial velocity - m/s, starting from rest, initially/beginning, how fast Acceleration - m/s² Time - s, how long 		
Givens	Work	
Answer		

 $x = v_{initial} t + \frac{1}{2} a t^2$

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

A speedboat has a constant acceleration of 2.0 m/s². If the initial velocity of the boat is 6.0 m/s, find its displacement after 8.0 seconds 3 pts -		
 Displacement - m, how far Initial velocity - m/s, starting from rest, initially/beginning, how fast Acceleration - m/s² Time - s, how long 		
Givens	Work	
Answer		

 $x = V_{initial} t + \frac{1}{2} a t^2$

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

A car is initially moving at 10 m/s and accelerates at a constant rate of 2.2 m/s² for 4.7 seconds, in a straight line. How far did the car travel during this time? - 3 pts -		
 Displacement - m, how far Initial velocity - m/s, starting from rest, initially/beginning, how fast Acceleration - m/s² Time - s, how long 		
Givens	Work	
Answer		

 $x = v_{initial} t + \frac{1}{2} a t^2$

NAME:

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve

Answer

5. Write your answer with the proper units		
A bicyclist approaches the crest of a hill at 4.5 m/s. She accelerates down the hill at a rate of 0.40 m/s² for 12 s. How far does she move down the hill during this time interval? - 3 pts -		
 Displacement - m, how far Initial velocity - m/s, starting from rest, initially/beginning, how fast Acceleration - m/s² Time - s, how long 		
Givens	Work	