NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A car is already traveling at a speed of $12 \mathrm{~m} / \mathrm{s}$ when the driver decides to accelerate at $2.7 \mathrm{~m} / \mathrm{s}^{2}$ for 2.5 seconds. How far does the car travel during this time? - 3 pts -

- Displacement -m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 1-x (w/ \mathbf{v}_{i})

$$
x=v_{\text {initial }} t+1 / 2 a t^{2}
$$

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

From the top of a cliff, a person used a slingshot to fire a pebble straight downward with an initial speed of $2.20 \mathrm{~m} / \mathrm{s}$. After 3.00 s , how far beneath the cliff-top is the pebble? - 3 pts -

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 1-x (w/ $\mathbf{v}_{\mathbf{i}}$)

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A speedboat has a constant acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$. If the initial velocity of the boat is $6.0 \mathrm{~m} / \mathrm{s}$, find its displacement after 8.0 seconds. - 3 pts -

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Answer

Worksheet: Kinematics Part 1-x (w/ $\mathbf{v}_{\mathbf{i}}$)

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A car is initially moving at $10 \mathrm{~m} / \mathrm{s}$ and accelerates at a constant rate of $2.2 \mathrm{~m} / \mathrm{s}^{2}$ for 4.7 seconds, in a straight line. How far did the car travel during this time? - 3 pts -

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - $\mathrm{m} / \mathrm{s}^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part $1-\mathbf{x}\left(\mathbf{w} / \mathbf{v}_{\mathbf{i}}\right) \quad \mathrm{x}=\mathrm{v}_{\text {initial }} \mathrm{t}+1 / 2$ a t^{2}

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A bicyclist approaches the crest of a hill at $4.5 \mathrm{~m} / \mathrm{s}$. She accelerates down the hill at a rate of $0.40 \mathrm{~m} / \mathrm{s}^{2}$ for 12 s . How far does she move down the hill during this time interval? - 3 pts -

- Displacement -m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

