NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A typical car is able to accelerate at a rate of $4.0 \mathrm{~m} / \mathrm{s}^{2}$. If you push the gas pedal of your car all the way down for a full 10 seconds, how far will you travel? - 3 pts -

- Displacement -m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 1-x (no $\left.\mathbf{v}_{\mathbf{i}}\right) \quad \mathrm{x}=\mathrm{v}_{\text {initial }} \mathrm{t}+1 / 2$ a t^{2}

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A sprinter starting from rest is able to accelerate at a rate of $3.7 \mathrm{~m} / \mathrm{s}^{2}$. How far is she able to run in 5.0 seconds if she is able to maintain her acceleration this entire time? - 3 pts -

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 1 - \mathbf{x} (no $\mathbf{v i}_{\mathbf{i}}$)
 $$
x=v_{\text {initial }} t+1 / 2 a t^{2}
$$

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A stone is dropped from rest from the top of a tall building. After 5.00 s of free-fall, what is the displacement of the stone? - 3 pts -

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Answer

Worksheet: Kinematics Part 1-x (no $\mathbf{v i}_{\mathbf{i}}$)

$$
x=v_{\text {initial }} t+1 / 2 a t^{2}
$$

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A stone is dropped into a deep well and is heard to hit the water 3.41 s after being dropped. Determine the depth of the well. - 3 pts -

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - $\mathrm{m} / \mathrm{s}^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 1-x (no $\left.\mathbf{v}_{\mathbf{i}}\right) \quad \mathrm{x}=\mathrm{V}_{\text {initial }} \mathrm{t}+1 / 2$ a t^{2}

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A spring in a toy gun is able to accelerate the plastic ball at a rate of $1.1 \mathrm{~m} / \mathrm{s}^{2}$. If the manufacturer wants the spring to be in contact with the plastic ball for only 0.50 s , far must the ball be pushed? - 3 pts -

- Displacement -m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

