NAME:

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

A typical car is able to accelerate at a rate of 4.0 m/s². If you push the gas pedal of your car all the way down for a full 10 seconds, how far will you travel? - 3 pts -

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
Answer	
Answer	

NAME:

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

A sprinter starting from rest is able to accelerate at a rate of 3.7 m/s ² . How far is she able to run in 5.0
seconds if she is able to maintain her acceleration this entire time? - 3 pts -

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
 Acceleration m/s²
- Time s, how long... •

Givens	Work
Answer	

 $x = v_{initial} t + \frac{1}{2} a t^2$

NAME:

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

A stone is dropped from rest from the top of a tall building. After 5.00 s of free-fall, what is the displacement of the stone? - 3 pts -

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
Answer	

NAME:

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

A stone is dropped into a	a deep well and is hea	rd to hit the water 3.41	s after being dropped	J. Determine the
depth of the well 3 pts	; -			

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
Answer	

 $x = v_{initial} t + \frac{1}{2} a t^2$

NAME:

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

A spring in a toy gun is able to accelerate the plastic ball at a rate of 1.1 m/s^2 . If the manufacturer wants the spring to be in contact with the plastic ball for only 0.50 s, far must the ball be pushed? - 3 pts -

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
Appuar	
Answer	