NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

From her bedroom window a girl drops a water balloon to the ground, 3.30 m below. If the balloon is released from rest, how long is it in the air? - 3 pts -

- Displacement -m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 1 - t

$$
x=v_{\text {initial }} t+1 / 2 a t^{2}
$$

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A feather is dropped on the moon from a height of 1.40 meters. The acceleration of gravity on the moon is $1.67 \mathrm{~m} / \mathrm{s}^{2}$. Determine the time for the feather to fall to the surface of the moon. - 3 pts -

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 1 - t

$$
x=v_{\text {initial }} t+1 / 2 a t^{2}
$$

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

The observation deck of tall skyscraper 370 m above the street. Ignoring air resistance, determine the time required for a penny to free fall from the deck to the street below. - 3 pts -

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

Answer

Worksheet: Kinematics Part 1 - t

$x=v_{\text {initial }} t+1 / 2 a t^{2}$

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

Juliet is dropping a rose down to Romeo from her balcony 5.6 meters from the ground. How long will it take for the rose to reach Romeo? - 3 pts -

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - $\mathrm{m} / \mathrm{s}^{2}$
- Time - s, how long...

Givens	Work

Worksheet: Kinematics Part 1 - t

$x=V_{\text {initial }} t+1 / 2 a t^{2}$

NAME:

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

The acceleration due to gravity on Jupiter is about $25 \mathrm{~m} / \mathrm{s}^{2}$. How long would it take for an object to fall a distance of 3.0 meters? - 3 pts -

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work

