Projectile Lab - Part A: Finding the v_{x} of YOUR launcher

1. Record the \# of YOUR launcher first! They are all different and you will need to use the same one for Part B next week. 2. Take careful note by observing the model up front for how you will shoot, being certain to regularly check with a level that it always launches at 0° (perfectly horizontal!).
2. Using ONLY the "SHORT RANGE" setting, fire 3 times to determine where you will tape your d_{x} mark paper down IN PORTRAIT POSITION so that the ball will approximately hit the middle of the paper.
3. Once it's taped down, $L A Y$ a piece of carbon paper on top of the mark paper with the side that has WORDS on it UP.
4. Perform 5 firing trials and measure from the floor directly under your launcher's opening to the middle dot of the 5 that were made on your mark paper for your d_{x}. THEN ALL MEMBERS OF YOUR GROUP MUST SEPARATELY CALCULATE YOUR LAUNCHER'S v HUNDREDTHS PLACE AND COMPARE!
5. TIPS: Have the same person perform the launches with a quick, straight upward pull; again, also check often with the level to make sure the launcher is firing at 0 !

Students will apply the kinematic equations to simple projectile motion situations ($\mathrm{v}_{\mathrm{iy}}=0$) to calculate an object's initial horizontal velocity, vertical displacement or horizontal displacement.
Projectile Lab - Part B: Predicting the $\mathrm{d}_{\underline{x}}$ from a new height

1. Using the same launcher you used in part A and the $\underline{v}_{\underline{x}}$ you calculated it to have, take note that Mr. S has now moved your launcher to a new height (a new d ${ }_{\mathrm{k}}$).
2. Carefully measure the new d_{y} you will now fire from and then use it with your launcher's v_{x} to calculate the exact d_{x} your launcher should fire the ball. (ALL DO THIS!)
3. Armed now with your predicted $\mathrm{d}_{x^{\prime}}$ get 2 sheets to \downarrow...... 4. Then position/tape your target paper in its proper place with carbon paper shots are taken and one of these results for your BEST 2 dots:

Not on paper $=14 / 20$
Outside 10\% but on paper =16/20; Inside 10\% = 17/20; Inside 5\% = 19/20; Actually hits d_{x} line $!=20 / 20$ AND +2 BP for all on the team!

