> Notes: Weight (aka "the force of gravity on an object")

Weight Formula

Recall Newton's 2nd Law:

$$
\mathrm{F}=\mathrm{ma}
$$

Weight Formula

$F_{\text {Weight }}=\mathrm{mg}$

$F_{\text {Weight }}$

m
g

Weight Formula

$F_{\text {Weight }}=m g$

$\mathrm{F}_{\text {Weight }}$ is the force of weight

m
g

Weight Formula

$F_{\text {Weight }}=m g$

$F_{\text {Weight }}$ is the force of weight

m is the mass
g

Weight Formula

$F_{\text {Weight }}=m g$

$F_{\text {Weight }}$ is the force of weight

m is the mass
g is the acceleration due to gravity [$9.8 \mathrm{~m} / \mathrm{s}^{2}$ on Earth]

What is the weight of a baby with a mass of 3.5 kg ?

- Mass-kg
- Acceleration due to gravity $-\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
$\mathrm{F}_{\text {Weight }}=$	
$\mathrm{m}=$	
$\mathrm{g}=$	

What is the weight of a baby with a mass of 3.5 kg ?

- Mass-kg
- Acceleration due to gravity $-\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
$\mathrm{F}_{\text {Weight }}=?$	
$\mathrm{~m}=$	
$\mathrm{g}=$	

What is the weight of a baby with a mass of 3.5 kg ?

- Mass-kg
- Acceleration due to gravity $-\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
$\mathrm{F}_{\text {Weight }}=?$	
$\mathrm{~m}=3.5 \mathrm{~kg}$	
$\mathrm{~g}=$	

What is the weight of a baby with a mass of 3.5 kg ?

- Mass-kg
- Acceleration due to gravity $-\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
$F_{\text {Weight }}=?$	
$m=3.5 \mathrm{~kg}$	
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$	

What is the weight of a baby with a mass of 3.5 kg ?

- Mass - kg
- Acceleration due to gravity $-\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work	
$F_{\text {Weight }}=?$		
$\mathrm{~m}=3.5 \mathrm{~kg}$		
$\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$		

What is the weight of a baby with a mass of 3.5 kg ?

- Mass - kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work	
$F_{\text {Weight }}=?$	$F_{\text {Weight }}=\mathrm{m} \mathrm{g}$	
$m=3.5 \mathrm{~kg}$	$F_{\text {Weight }}=(3.5)(9.8)$	

$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

What is the weight of a baby with a mass of 3.5 kg ?

- Mass - kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

$$
\begin{array}{l|l}
\text { Givens } & \text { Work } \\
F_{\text {Weight }}=? & F_{\text {Weight }}=\mathrm{m} \mathrm{~g} \\
\mathrm{~m}=3.5 \mathrm{~kg} & \mathrm{~F}_{\text {Weight }}=(3.5)(9.8) \\
\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2} & \mathrm{~F}_{\text {Weight }}=34 \mathrm{~N}
\end{array}
$$

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
F Weight $=$	
$\mathrm{m}=$	
$\mathrm{g}=$	

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
F Weight $=540 \mathrm{~N}$	
$\mathrm{~m}=$	
$\mathrm{g}=$	

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
F Weight $^{\prime}=540 \mathrm{~N}$	
$\mathrm{~m}=?$	
$\mathrm{~g}=$	

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	
$F_{\text {Weight }}=540 \mathrm{~N}$	
$\mathrm{~m}=?$	
$\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$	Work

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work	
$F_{\text {Weight }}=540 \mathrm{~N}$		
$\mathrm{~m}=?$		
$\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$		

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work	
$F_{\text {Weight }}=540 \mathrm{~N}$		$F_{\text {Weight }}=\mathrm{m} \mathrm{g}$
$\mathrm{m}=?$	$540=\mathrm{m} 9.8$	
$\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$		

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work	
$F_{\text {Weight }}=540 \mathrm{~N}$		$F_{\text {Weight }}=\mathrm{m} \mathrm{g}$
$\mathrm{m}=?$	$540=\mathrm{m} 9.8$	
$\mathrm{~g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$	$\mathrm{~m}=55 \mathrm{~kg}$	

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
$F_{\text {Weight }}=$	Mass does not change!
$\mathrm{m}=$	55 kg on Earth $=55 \mathrm{~kg}$ on the Moon
$\mathrm{g}=$	

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
F Weight $=$	
$\mathrm{m}=$	
$\mathrm{g}=$	

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
F Weight $=?$	
$\mathrm{~m}=$	
$\mathrm{g}=$	

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
$F_{\text {Weight }}=?$	
$\mathrm{~m}=55 \mathrm{~kg}$	
$\mathrm{~g}=$	

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
$F_{\text {Weight }}=?$	
$\mathrm{~m}=55 \mathrm{~kg}$	
$\mathrm{~g}=1.6 \mathrm{~m} / \mathrm{s}^{2}$	

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work	
$F_{\text {Weight }}=?$		
$m=55 \mathrm{~kg}$	$F_{\text {Weight }}=\mathrm{m} \mathrm{g}$	
$g=1.6 \mathrm{~m} / \mathrm{s}^{2}$		

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity - $\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work
$F_{\text {Weight }}=?$	$F_{\text {Weight }}=\mathrm{m} \mathrm{g}$
$\mathrm{m}=55 \mathrm{~kg}$	$F_{\text {Weight }}=(55)(1.6)$
$g=1.6 \mathrm{~m} / \mathrm{s}^{2}$	

If your weight is 540 N , what is your mass? What is your mass on the moon? How much would you weigh on the moon?

- Mass-kg
- Acceleration due to gravity $-\mathrm{m} / \mathrm{s}^{2}$
- Force of Weight - N

Givens	Work	
$F_{\text {Weight }}=?$	$F_{\text {Weight }}=\mathrm{m} \mathrm{g}$	
$\mathrm{m}=55 \mathrm{~kg}$	$\mathrm{~F}_{\text {Weight }}=(55)(1.6)$	
$\mathrm{g}=1.6 \mathrm{~m} / \mathrm{s}^{2}$	$\mathrm{~F}_{\text {Weight }}=88 \mathrm{~N}$	

