Notes: Weight (aka "the force of gravity on an object")

Recall Newton's 2nd Law:

F = m a

$F_{Weight} = m g$

 $\mathsf{F}_{\mathsf{Weight}}$

m

g

$$F_{Weight} = m g$$

 F_{Weight} is the force of weight

m

g

$$F_{Weight} = m g$$

 F_{Weight} is the force of weight

m is the mass

g

$$F_{Weight} = m g$$

 F_{Weight} is the force of weight

m is the mass

g is the acceleration due to gravity [9.8 m/s² on Earth]

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} =	
m =	
g =	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = ?	
m =	
g =	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = ?	
m = 3.5 kg	
g =	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = ?	
m = 3.5 kg	
$g = 9.8 \text{ m/s}^2$	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = ?	$F_{Weight} = m g$
m = 3.5 kg	
$g = 9.8 \text{ m/s}^2$	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = ?	F _{Weight} = m g
m = 3.5 kg	F _{Weight} = (3.5) (9.8)
$g = 9.8 \text{ m/s}^2$	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = ?	$F_{Weight} = m g$
m = 3.5 kg	F _{Weight} = (3.5) (9.8)
$g = 9.8 \text{ m/s}^2$	$F_{Weight} = 34 N$

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} =	
m =	
g =	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = 540 N	
m =	
g =	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = 540 N	
m = ?	
g =	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
$F_{Weight} = 540 N$	
m = ?	
g = 9.8 m/s ²	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
$F_{Weight} = 540 N$	$F_{Weight} = m g$
m = ?	
$g = 9.8 \text{ m/s}^2$	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
$F_{Weight} = 540 N$	$F_{Weight} = m g$
m = ?	540 = m 9.8
$g = 9.8 \text{ m/s}^2$	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = 540 N	$F_{Weight} = m g$
m = ?	540 = m 9.8
$g = 9.8 \text{ m/s}^2$	m = 55 kg

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} =	Mass does not change!
m =	55 kg on Earth = 55 kg on the Moon
g =	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} =	
m =	
g =	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = ?	
m =	
g =	

•	Mass	-	kg
---	------	---	----

- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = ?	
m = 55 kg	
g =	

•	Mass	-	kg
---	------	---	----

- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = ?	
m = 55 kg	
$g = 1.6 \text{ m/s}^2$	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens	Work
F _{Weight} = ?	$F_{Weight} = m g$
m = 55 kg	
g = 1.6 m/s ²	

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Work Givens $F_{Weight} = ?$ $F_{Weight} = m g$ m = 55 kg $F_{Weight} = (55) (1.6)$ $g = 1.6 \text{ m/s}^2$

- Mass kg
- Acceleration due to gravity m/s²
- Force of Weight N

Givens Work $F_{Weight} = ?$ $F_{Weight} = m g$ m = 55 kg $F_{Weight} = (55) (1.6)$ $g = 1.6 \text{ m/s}^2$ $F_{Weight} = 88 N$