Notes: Kinematics Part 2

Kinematic Equation

$$
\mathrm{V}_{\text {final }}=\mathrm{V}_{\text {initial }}+\mathrm{at}
$$

a
t

Kinematic Equation

$$
\mathrm{V}_{\text {final }}=\mathrm{v}_{\text {initial }}+\mathrm{at}
$$

$\mathrm{v}_{\text {final }}$ is the final velocity, the velocity at the end of the problem
$v_{\text {initial }}$
a
t

Kinematic Equation

$$
v_{\text {final }}=v_{\text {initial }}+a t
$$

$\mathrm{v}_{\text {final }}$ is the final velocity, the velocity at the end of the problem
$v_{\text {initial }}$ is the initial velocity, the velocity at the beginning of the problem
a
t

Kinematic Equation

$$
v_{\text {final }}=v_{\text {initial }}+a t
$$

$\mathrm{v}_{\text {final }}$ is the final velocity, the velocity at the end of the problem
$v_{\text {initial }}$ is the initial velocity, the velocity at the beginning of the problem
a is the acceleration, the rate that the velocity changes

Kinematic Equation

$$
v_{\text {final }}=v_{\text {initial }}+a t
$$

$\mathrm{v}_{\text {final }}$ is the final velocity, the velocity at the end of the problem
$v_{\text {initial }}$ is the initial velocity, the velocity at the beginning of the problem
a is the acceleration, the rate that the velocity changes
t is the time, measured in seconds

How to Solve a Kinematics Problem

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A fully loaded Boeing 747 with all engines at full thrust accelerates at $2.6 \mathrm{~m} / \mathrm{s}^{2}$. Its minimum takeoff speed is $70 \mathrm{~m} / \mathrm{s}$. How much time will the plane take to reach its takeoff speed?

- Initial velocity - m / s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=$	
$v_{f}=$	
$a=$	
$t=$	

A fully loaded Boeing 747 with all engines at full thrust accelerates at $2.6 \mathrm{~m} / \mathrm{s}^{2}$. Its minimum takeoff speed is $70 \mathrm{~m} / \mathrm{s}$. How much time will the plane take to reach its takeoff speed?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$v_{\mathrm{f}}=$	
$\mathrm{a}=$	
$\mathrm{t}=$	

A fully loaded Boeing 747 with all engines at full thrust accelerates at $2.6 \mathrm{~m} / \mathrm{s}^{2}$. Its minimum takeoff speed is $70 \mathrm{~m} / \mathrm{s}$. How much time will the plane take to reach its takeoff speed?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$v_{\mathrm{f}}=70 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=$	
$\mathrm{t}=$	

A fully loaded Boeing 747 with all engines at full thrust accelerates at $2.6 \mathrm{~m} / \mathrm{s}^{2}$. Its minimum takeoff speed is $70 \mathrm{~m} / \mathrm{s}$. How much time will the plane take to reach its takeoff speed?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$v_{\mathrm{f}}=70 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=2.6 \mathrm{~m} / \mathrm{s}^{2}$	
$\mathrm{t}=$	

A fully loaded Boeing 747 with all engines at full thrust accelerates at $2.6 \mathrm{~m} / \mathrm{s}^{2}$. Its minimum takeoff speed is $70 \mathrm{~m} / \mathrm{s}$. How much time will the plane take to reach its takeoff speed?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$v_{\mathrm{f}}=70 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=2.6 \mathrm{~m} / \mathrm{s}^{2}$	
$\mathrm{t}=?$	

A fully loaded Boeing 747 with all engines at full thrust accelerates at $2.6 \mathrm{~m} / \mathrm{s}^{2}$. Its minimum takeoff speed is $70 \mathrm{~m} / \mathrm{s}$. How much time will the plane take to reach its takeoff speed?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$v_{f}=70 \mathrm{~m} / \mathrm{s}$	$v_{\text {final }}=v_{\text {initial }}+\mathrm{at}$
$\mathrm{a}=2.6 \mathrm{~m} / \mathrm{s}^{2}$	
$\mathrm{t}=?$	

A fully loaded Boeing 747 with all engines at full thrust accelerates at $2.6 \mathrm{~m} / \mathrm{s}^{2}$. Its minimum takeoff speed is $70 \mathrm{~m} / \mathrm{s}$. How much time will the plane take to reach its takeoff speed?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work	
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	$v_{\text {final }}=v_{\text {initial }}+\mathrm{at}$	
$v_{\mathrm{f}}=70 \mathrm{~m} / \mathrm{s}$	$70=0+2.6 \mathrm{t}$	
$\mathrm{a}=2.6 \mathrm{~m} / \mathrm{s}^{2}$		
$\mathrm{t}=?$		

A fully loaded Boeing 747 with all engines at full thrust accelerates at $2.6 \mathrm{~m} / \mathrm{s}^{2}$. Its minimum takeoff speed is $70 \mathrm{~m} / \mathrm{s}$. How much time will the plane take to reach its takeoff speed?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	$v_{\text {final }}=v_{\text {initial }}+\mathrm{at}$
$\mathrm{v}_{\mathrm{f}}=70 \mathrm{~m} / \mathrm{s}$	$70=0+2.6 \mathrm{t}$
$\mathrm{a}=2.6 \mathrm{~m} / \mathrm{s}^{2}$	$\mathrm{t}=27 \mathrm{~s}$
$\mathrm{t}=?$	

Small frogs that are good jumpers are capable of remarkable acceleration. One species reaches a takeoff speed of $3.7 \mathrm{~m} / \mathrm{s}$ in 0.060 s . What is the frog's acceleration during the jump?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=$	
$v_{f}=$	
$a=$	
$t=$	

Small frogs that are good jumpers are capable of remarkable acceleration. One species reaches a takeoff speed of $3.7 \mathrm{~m} / \mathrm{s}$ in 0.060 s . What is the frog's acceleration during the jump?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

```
Givens
vi}=0\textrm{m}/\textrm{s
V
a =
t =
```

Small frogs that are good jumpers are capable of remarkable acceleration. One species reaches a takeoff speed of $3.7 \mathrm{~m} / \mathrm{s}$ in 0.060 s . What is the frog's acceleration during the jump?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$v_{\mathrm{f}}=3.7 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=$	
$\mathrm{t}=$	

Small frogs that are good jumpers are capable of remarkable acceleration. One species reaches a takeoff speed of $3.7 \mathrm{~m} / \mathrm{s}$ in 0.060 s . What is the frog's acceleration during the jump?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$v_{f}=3.7 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=?$	
$\mathrm{t}=\mathrm{m}$	

Small frogs that are good jumpers are capable of remarkable acceleration. One species reaches a takeoff speed of $3.7 \mathrm{~m} / \mathrm{s}$ in 0.060 s . What is the frog's acceleration during the jump?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$v_{f}=3.7 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=?$	
$\mathrm{t}=0.060 \mathrm{~s}$	

Small frogs that are good jumpers are capable of remarkable acceleration. One species reaches a takeoff speed of $3.7 \mathrm{~m} / \mathrm{s}$ in 0.060 s . What is the frog's acceleration during the jump?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$v_{f}=3.7 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=?$	$v_{\text {final }}=v_{\text {initial }}+\mathrm{at}$
$\mathrm{t}=0.060 \mathrm{~s}$	

Small frogs that are good jumpers are capable of remarkable acceleration. One species reaches a takeoff speed of $3.7 \mathrm{~m} / \mathrm{s}$ in 0.060 s . What is the frog's acceleration during the jump?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	$v_{\text {final }}=v_{\text {initial }}+\mathrm{at}$
$\mathrm{v}_{\mathrm{f}}=3.7 \mathrm{~m} / \mathrm{s}$	$3.7=0+\mathrm{a} 0.060$
$\mathrm{a}=?$	
$\mathrm{t}=0.060 \mathrm{~s}$	

Small frogs that are good jumpers are capable of remarkable acceleration. One species reaches a takeoff speed of $3.7 \mathrm{~m} / \mathrm{s}$ in 0.060 s . What is the frog's acceleration during the jump?

- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Final velocity - m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	$v_{\text {final }}=v_{\text {initial }}+\mathrm{at}$
$v_{\mathrm{f}}=3.7 \mathrm{~m} / \mathrm{s}$	$3.7=0+\mathrm{a} 0.060$
$\mathrm{a}=?$	$\mathrm{a}=62 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{t}=0.060 \mathrm{~s}$	

