Notes: Kinematics Part 2

$$V_{final} = V_{initial} + a t$$

V_{final}

V_{initial}

a

t

$$V_{final} = V_{initial} + a t$$

v_{final} is the final velocity, the velocity at the end of the problem

V_{initial}

a

t

$$V_{\text{final}} = V_{\text{initial}} + a t$$

v_{final} is the final velocity, the velocity at the end of the problem

v_{initial} is the initial velocity, the velocity at the beginning of the problem

a

t

$$V_{\text{final}} = V_{\text{initial}} + a t$$

 v_{final} is the final velocity, the velocity at the end of the problem v_{initial} is the initial velocity, the velocity at the beginning of the problem a is the acceleration, the rate that the velocity changes

$$V_{\text{final}} = V_{\text{initial}} + a t$$

 v_{final} is the final velocity, the velocity at the end of the problem v_{initial} is the initial velocity, the velocity at the beginning of the problem a is the acceleration, the rate that the velocity changes t is the time, measured in seconds

How to Solve a Kinematics Problem

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
V _i =	
V _f =	
a =	
t =	

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
$v_i = 0 \text{ m/s}$	
$V_f =$	
a =	
t =	

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
$v_i = 0 \text{ m/s}$	
$v_f = 70 \text{ m/s}$	
a =	
t =	

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Work

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
$v_i = 0 \text{ m/s}$	
$v_f = 70 \text{ m/s}$	
$a = 2.6 \text{ m/s}^2$	
t = ?	

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
$v_i = 0 \text{ m/s}$	$v_{final} = v_{initial} + a t$
$v_f = 70 \text{ m/s}$	
$a = 2.6 \text{ m/s}^2$	
t = ?	

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work	
$v_i = 0 \text{ m/s}$	$V_{final} = V_{initial} + a t$	
$v_f = 70 \text{ m/s}$	70 = 0 + 2.6 t	
$a = 2.6 \text{ m/s}^2$		
t = ?		

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work	
$v_i = 0 \text{ m/s}$	$V_{final} = V_{initial} + a t$	
$v_f = 70 \text{ m/s}$	70 = 0 + 2.6 t	
$a = 2.6 \text{ m/s}^2$	t = 27 s	
t = ?		

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
v _i =	
$V_f =$	
a =	
t =	

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
$v_i = 0 \text{ m/s}$	
$V_f =$	
a =	
t =	

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

 $v_i = 0 \text{ m/s}$

 $v_f = 3.7 \text{ m/s}$

a =

t =

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

G	ive	ns
---	-----	----

 $v_i = 0 \text{ m/s}$

 $v_f = 3.7 \text{ m/s}$

a = ?

t =

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

 $v_i = 0 \text{ m/s}$

 $v_f = 3.7 \text{ m/s}$

a = ?

t = 0.060 s

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

$$v_i = 0 \text{ m/s}$$

$$v_f = 3.7 \text{ m/s}$$

$$a = ?$$

$$t = 0.060 s$$

$$V_{\text{final}} = V_{\text{initial}} + a t$$

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²

t = 0.060 s

Time - s, how long...

	Givens	Work
	$v_i = 0 \text{ m/s}$	v _{final} = v _{initial} + a t
	$v_f = 3.7 \text{ m/s}$	$3.7 = 0 + a \ 0.060$
	a = ?	
ı		

- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Final velocity m/s, comes to a stop/rest, finally/end, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
$v_i = 0 \text{ m/s}$	$v_{final} = v_{initial} + a t$
$v_f = 3.7 \text{ m/s}$	$3.7 = 0 + a \ 0.060$
a = ?	$a = 62 \text{ m/s}^2$
t = 0.060 s	