Notes: Kinematics Part 1

$$x = v_{initial} t + \frac{1}{2} a t^2$$

x is distance traveled by the end of the time, measured in meters

V_{initial}

а

t

$$x = v_{initial} t + \frac{1}{2} a t^2$$

x is distance traveled by the end of the time, measured in meters

 $v_{initial}$ is the initial velocity, the velocity at the beginning of the problem

а

t

t

$$x = v_{initial} t + \frac{1}{2} a t^2$$

x is distance traveled by the end of the time, measured in meters

 $v_{initial}$ is the initial velocity, the velocity at the beginning of the problem

a is the acceleration, the rate that the velocity changes

$$x = v_{initial} t + \frac{1}{2} a t^2$$

x is distance traveled by the end of the time, measured in meters

 $v_{initial}$ is the initial velocity, the velocity at the beginning of the problem

a is the acceleration, the rate that the velocity changes

t is the time, measured in seconds

How to Solve a Kinematics Problem

- 1. Read the following problem
- 2. Highlight your "proof" for assigning variables
- 3. List the givens
- 4. Solve
- 5. Write your answer with the proper units

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x =	
v _i =	
a =	
t =	
t =	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = ?	
v _i =	
a =	
t =	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = ?	
$v_i = 0 m/s$	
a =	
t =	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = ?	
$v_i = 0 m/s$	
a = 2.14 m/s ²	
t =	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = ?	
$v_i = 0 m/s$	
a = 2.14 m/s ²	
t = 4.50 s	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = ?	$x = v_{initial} t + \frac{1}{2} a t^2$
$v_i = 0 m/s$	
a = 2.14 m/s ²	
t = 4.50 s	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = ?	$x = v_{initial} t + \frac{1}{2} a t^2$
$v_i = 0 m/s$	$X = (0) (4.50) + \frac{1}{2} (2.14) (4.50)^2$
a = 2.14 m/s ²	
t = 4.50 s	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = ?	$x = v_{initial} t + \frac{1}{2} a t^2$
$v_i = 0 m/s$	$x = (0) (4.50) + \frac{1}{2} (2.14) (4.50)^2$
a = 2.14 m/s ²	x = 22 m
t = 4.50 s	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
X =	
V _i =	
a =	
t =	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = -20.0 m	
V _i =	
a =	
t =	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = -20.0 m	
$v_i = 0 m/s$	
a =	
t =	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Work

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

rk
ľ

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = -20.0 m	$x = v_{initial} t + \frac{1}{2} a t^2$
$v_i = 0 m/s$	
a = ?	
t = 3.40 s	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

Givens	Work
x = -20.0 m	$x = v_{initial} t + \frac{1}{2} a t^2$
$v_i = 0 m/s$	-20.0 = (0) (3.40) + ½ (a) (3.40) ²
a = ?	
t = 3.40 s	

- Displacement m, how far
- Initial velocity m/s, starting from rest, initially/beginning, how fast...
- Acceleration m/s²
- Time s, how long...

$x = v_{initial} t + \frac{1}{2} a t^2$
-20.0 = (0) (3.40) + ½ (a) (3.40) ²
$a = -3.46 \text{ m/s}^2$