Notes: Kinematics Part 1

Kinematic Equation

$$
x=v_{\text {initial }} t+1 / 2 a t^{2}
$$

x is distance traveled by the end of the time, measured in meters
$v_{\text {initial }}$
a
t

Kinematic Equation

$x=v_{\text {initial }} t+1 / 2 a t^{2}$

x is distance traveled by the end of the time, measured in meters
$v_{\text {initial }}$ is the initial velocity, the velocity at the beginning of the problem
a
t

Kinematic Equation

$X=v_{\text {initial }} t+1 / 2 a t^{2}$

x is distance traveled by the end of the time, measured in meters
$v_{\text {initial }}$ is the initial velocity, the velocity at the beginning of the problem
a is the acceleration, the rate that the velocity changes

Kinematic Equation

$X=v_{\text {initial }} t+1 / 2 a t^{2}$

x is distance traveled by the end of the time, measured in meters
$v_{\text {initial }}$ is the initial velocity, the velocity at the beginning of the problem
a is the acceleration, the rate that the velocity changes
t is the time, measured in seconds

How to Solve a Kinematics Problem

1. Read the following problem
2. Highlight your "proof" for assigning variables
3. List the givens
4. Solve
5. Write your answer with the proper units

A skier, starting from rest, accelerates down a slope at $2.14 \mathrm{~m} / \mathrm{s}^{2}$. How far has she gone at the end of 4.50 s ?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time-s, how long...

Givens	Work
$x=$	
$v_{i}=$	
$\mathrm{a}=$	
$\mathrm{t}=$	

A skier, starting from rest, accelerates down a slope at $2.14 \mathrm{~m} / \mathrm{s}^{2}$. How far has she gone at the end of 4.50 s ?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time-s, how long...

Givens	Work
$x=?$	
$v_{i}=$	
$a=$	
$t=$	

A skier, starting from rest, accelerates down a slope at $2.14 \mathrm{~m} / \mathrm{s}^{2}$. How far has she gone at the end of 4.50 s ?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time-s, how long...

Givens	Work
$x=?$	
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=$	
$\mathrm{t}=$	

A skier, starting from rest, accelerates down a slope at $2.14 \mathrm{~m} / \mathrm{s}^{2}$. How far has she gone at the end of 4.50 s ?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time-s, how long...

Givens	Work
$x=?$	
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=2.14 \mathrm{~m} / \mathrm{s}^{2}$	
$\mathrm{t}=$	

A skier, starting from rest, accelerates down a slope at $2.14 \mathrm{~m} / \mathrm{s}^{2}$. How far has she gone at the end of 4.50 s ?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$x=?$	
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=2.14 \mathrm{~m} / \mathrm{s}^{2}$	
$\mathrm{t}=4.50 \mathrm{~s}$	

A skier, starting from rest, accelerates down a slope at $2.14 \mathrm{~m} / \mathrm{s}^{2}$. How far has she gone at the end of 4.50 s ?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$x=?$	
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=2.14 \mathrm{~m} / \mathrm{s}^{2}$	
$\mathrm{t}=4.50 \mathrm{~s}$	

A skier, starting from rest, accelerates down a slope at $2.14 \mathrm{~m} / \mathrm{s}^{2}$. How far has she gone at the end of 4.50 s ?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$x=?$	$x=v_{\text {initial }} t+1 / 2 a^{2}$
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	$x=(0)(4.50)+1 / 2(2.14)(4.50)^{2}$
$a=2.14 \mathrm{~m} / \mathrm{s}^{2}$	
$t=4.50 \mathrm{~s}$	

A skier, starting from rest, accelerates down a slope at $2.14 \mathrm{~m} / \mathrm{s}^{2}$. How far has she gone at the end of 4.50 s?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long...

Givens	Work
$x=?$	$x=v_{\text {initial }} t+1 / 2 a^{2}$
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	$x=(0)(4.50)+1 / 2(2.14)(4.50)^{2}$
$a=2.14 \mathrm{~m} / \mathrm{s}^{2}$	$x=22 \mathrm{~m}$
$t=4.50 \mathrm{~s}$	

Suppose you are visiting a planet in a distant part of the galaxy. (Meaning that the " g " is different than it is on Earth). To determine the acceleration due to gravity on this planet, you drop a rock from a height of 20.0 m . The rock strikes the ground 3.40 s later. What is the acceleration due to gravity on this planet?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long.

Givens	Work
$x=$	
$v_{i}=$	
$a=$	
$t=$	

Suppose you are visiting a planet in a distant part of the galaxy. (Meaning that the " g " is different than it is on Earth). To determine the acceleration due to gravity on this planet, you drop a rock from a height of 20.0 m . The rock strikes the ground 3.40 s later. What is the acceleration due to gravity on this planet?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long.

Givens	Work
$x=-20.0 \mathrm{~m}$	
$v_{i}=$	
$\mathrm{a}=\mathrm{t}=$	
$\mathrm{t}=$	

Suppose you are visiting a planet in a distant part of the galaxy. (Meaning that the " g " is different than it is on Earth). To determine the acceleration due to gravity on this planet, you drop a rock from a height of 20.0 m . The rock strikes the ground 3.40 s later. What is the acceleration due to gravity on this planet?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long.
Givens
$x=-20.0 \mathrm{~m}$
$v_{i}=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=$
$\mathrm{t}=$
Work

Suppose you are visiting a planet in a distant part of the galaxy. (Meaning that the " g " is different than it is on Earth). To determine the acceleration due to gravity on this planet, you drop a rock from a height of 20.0 m . The rock strikes the ground 3.40 s later. What is the acceleration due to gravity on this planet?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long.
Givens
$x=-20.0 \mathrm{~m}$
$v_{i}=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=?$
$\mathrm{t}=$
Work

Suppose you are visiting a planet in a distant part of the galaxy. (Meaning that the " g " is different than it is on Earth). To determine the acceleration due to gravity on this planet, you drop a rock from a height of 20.0 m . The rock strikes the ground 3.40 s later. What is the acceleration due to gravity on this planet?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long.
Givens
$x=-20.0 \mathrm{~m}$
$v_{i}=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=?$
$\mathrm{t}=3.40 \mathrm{~s}$
Work

Suppose you are visiting a planet in a distant part of the galaxy. (Meaning that the " g " is different than it is on Earth). To determine the acceleration due to gravity on this planet, you drop a rock from a height of 20.0 m . The rock strikes the ground 3.40 s later. What is the acceleration due to gravity on this planet?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long.

Givens	Work
$x=-20.0 \mathrm{~m}$	
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	
$\mathrm{a}=?$	
$t=3.40 \mathrm{~s}$	

Suppose you are visiting a planet in a distant part of the galaxy. (Meaning that the " g " is different than it is on Earth). To determine the acceleration due to gravity on this planet, you drop a rock from a height of 20.0 m . The rock strikes the ground 3.40 s later. What is the acceleration due to gravity on this planet?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time - s, how long.

Givens	Work
$x=-20.0 \mathrm{~m}$	
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	$-20.0=(0)(3.40)+1 / 2(\mathrm{a})(3.40)^{2}$
$\mathrm{a}=?$	
$t=3.40 \mathrm{~s}$	

Suppose you are visiting a planet in a distant part of the galaxy. (Meaning that the " g " is different than it is on Earth). To determine the acceleration due to gravity on this planet, you drop a rock from a height of 20.0 m . The rock strikes the ground 3.40 s later. What is the acceleration due to gravity on this planet?

- Displacement - m, how far
- Initial velocity - m/s, starting from rest, initially/beginning, how fast...
- Acceleration - m/s ${ }^{2}$
- Time-s, how long.

Givens	Work
$x=-20.0 \mathrm{~m}$	$x=v_{\text {initial }} t+1 / 2 a t^{2}$
$v_{i}=0 \mathrm{~m} / \mathrm{s}$	$-20.0=(0)(3.40)+1 / 2(a)(3.40)^{2}$
$a=?$	$a=-3.46 \mathrm{~m} / \mathrm{s}^{2}$
$t=3.40 \mathrm{~s}$	

