\qquad What is the acceleration due to gravity? Date Pd.
This rate of acceleration assumes that gravity is the only force ($\boldsymbol{4}$ a push or pull causing acceleration or preventing motion) acting on any falling mass. What is the actual acceleration of falling objects in everyday life then? You and your group will find out today in a way you must determine using the back side of the E-F "crooked" breezeway as your drop site.
(Phrases in the discussions below are acceptable EXCEPT in the CONCLUSION when you must give FULL SENTENCES.) Object dropped:

Methods you used to measure X (OR Y) IN METERS!:

Methods you used to measure TIMW in seconds from top and bottom of the drop:

Trial	\mathbf{d}	$\left.\mathbf{(t}_{\text {window }}+\mathbf{t}_{\text {ground }}\right) / \mathbf{2}=\mathbf{t}$
Drop 1	\downarrow	
Drop 2	\downarrow	
	\downarrow	
Drop 3	\downarrow	
Averages for		
calculations:		

Calculations to find a due to gravity:

Conclusion ON THE BACK that answers these questions: Why did groups NOT end up with exactly the same calculated as? Why do YOU think you were specifically above/below the accepted value Mr. S. gave? What could be changed in this experiment to get closer to the expected value?

